Chinese Journal of Rice Science ›› 2012, Vol. 26 ›› Issue (2): 235-245.DOI: 10.3969/j.issn.10017216.2012.02.014
• Reviews and Special Topics • Previous Articles Next Articles
GUO Liang, ZHANG Zhenhua, ZHUANG Jieyun*
Received:
2011-09-06
Revised:
2011-11-15
Online:
2012-03-10
Published:
2012-03-10
Contact:
ZHUANG Jieyun*
郭梁,张振华,庄杰云*
通讯作者:
庄杰云*
基金资助:
国家转基因生物新品种培育重大专项(2011ZX08001004);国家863计划资助项目(2011AA10A101);中央级公益性科研院所基本科研业务费专项(2009RG002)。
CLC Number:
GUO Liang, ZHANG Zhenhua, ZHUANG Jieyun*. Quantitative Trait Loci for Heading Date and Their Relationship with the Genetic Control of Yield Traits in Rice (Oryza sativa)[J]. Chinese Journal of Rice Science, 2012, 26(2): 235-245.
郭梁,张振华,庄杰云*. 水稻抽穗期QTL及其与产量性状遗传控制的关系[J]. 中国水稻科学, 2012, 26(2): 235-245.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.10017216.2012.02.014
\[1\]Thomson M J, Edwards J D, Septiningsih E M, et al. Substitution mapping of dth1.1, a floweringtime quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple subQTL. Genetics, 2006, 172: 25012514.\[2\]Maas L F, McClung A, McCouch S. Dissection of a QTLreveals an adaptive, interacting gene complex associated with transgressive variation for flowering time in rice. Theor Appl Genet, 2010, 120: 895908.\[3\]Hayama R, Yokoi S, Tamaki S, et al. Adaptation of photoperiodic control pathways produces shortday flowering in rice. Nature, 2003, 422: 719722.\[4\]Kim S L, Lee S, Kim H J, et al. OsMADS51 is a shortday flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol, 2007, 145: 14841494.\[5\]Lin H, Ashikari M, Yamanouchi U, et al. Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breeding Sci, 2002, 52: 3541.\[6\]Lee S, Kim J, Han J J, et al. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO1/AGAMOUSLIKE 20 (SOC1/AGL20) ortholog in rice. Plant J, 2004, 38: 754764.\[7\]Rao N N, Prasad K, Kumar P R, et al. Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci USA, 2008, 105: 36463651.\[8\]Ryu C H, Lee S, Cho L H, Kim S L, et al. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)dependent flowering in rice. Plant Cell Environ, 2009, 32: 14121427.\[9\]Li D, Yang C, Li X, et al. Functional characterization of rice OsDof12. Planta, 2009, 229: 11591169.\[10\]Lim J, Moon Y H, An G, et al. Two rice MADS domain proteins interact with OsMADS1. Plant Mol Biol, 2000, 44: 513527.\[11\]Furutani I, Sukegawa S, Kyozuka J. Genomewide analysis of spatial and temporal gene expression in rice panicle development. Plant J, 2006, 46: 503511.\[12\]Takeuchi Y, Lin S Y, Sasaki T, et al. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl Genet, 2003, 107: 11741180.\[13\]Komiya R, Ikegami A, Tamaki S, et al. Hd3a and RFT1 are essential for flowering in rice. Development, 2008, 135: 767774.\[14\]Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 79227927.\[15\]Matsubara K, Kono I, Hori K, et al. Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor Appl Genet, 2008, 117: 935945.\[16\]Dai C, Xue H W. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signaling. EMBO J, 2010, 29: 19161927.\[17\]Monna L, Lin H X, Kojima S, et al. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet, 2002, 104: 772778.\[18\]Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under shortday conditions. Plant Cell Physiol, 2002, 43: 10961105.\[19\]Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 24732483.\[20\]Izawa T, Oikawa T, Tokutomi S, et al. Phytochromes confer the photoperiodic control of flowering in rice (a shortday plant). Plant J, 2000, 22: 391399.\[21\]Andres F, Galbraith D W, Talon M, et al. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol, 2009, 151: 681690.\[22\]Lin H, Liang Z W, Sasaki T, et al. Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breeding Sci, 2003, 53: 5159.\[23\]Xue W, Xing Y, Weng X, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761767.\[24\]Yamamoto T, Kuboki Y, Lin S Y, et al. Fine mapping of quantitative trait loci Hd1, Hd2 and Hd3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998, 97: 3744.\[25\]Wei X, Xu J, Guo H, et al. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 17471758.\[26\]Yan W H, Wang P, Chen H X, et al. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4: 319330.\[27\]Kim S K, Yun C H, Lee J H, et al. OsCO3, a CONSTANSLIKE gene, controls flowering by negatively regulating the expression of FTlike genes under SD conditions in rice. Planta, 2008, 228: 355365.\[28\]Matsubara K, Yamanouchi U, Wang Z X, et al. Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by upregulating Ehd1. Plant Physiol, 2008, 148: 14251435.\[29\]Doi K, Izawa T, Fuse T, et al. Ehd1, a Btype response regulator in rice, confers shortday promotion of flowering and controls FTlike gene expression. Genes Dev, 2004, 18: 926936.\[30\]Tanksley S D. Mapping polygenes.Annu Rev Genet, 1993, 27: 205233.\[31\]Koumproglou R, Wilkes T M, Townson P, et al. STAIRS: A new genetic resource for functional genomic studies of Arabidopsis. Plant J, 2002, 31: 355364.\[32\]Wu J, Mizuno H, HayashiTsugane M, et al. Physical maps and recombination frequency of six rice chromosomes. Plant J, 2003, 36, 720730.\[33\]Zhao Q, Zhang Y, Cheng Z, et al. A fine physical map of the rice chromosome 4. Genome Res, 2002, 12: 817823.\[34\]Yano M, Harushima Y, Nagamura Y, et al. Identification of quantitative trait loci controlling heading date in rice using a highdensity linkage map. Theor Appl Genet, 1997, 95: 10251032.\[35\]Lin S Y, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet, 1998, 96: 9771003.\[36\]李泽福, 周彤, 郑天清, 等. 水稻抽穗期QTL与环境互作分析. 作物学报, 2002, 28(6): 771776.\[37\]王松凤, 贾育红, 江玲, 等. 控制水稻种子休眠和抽穗期的数量基因位点. 南京农业大学学报, 2006, 29(1): 16.\[38\]Xiao J, Li J, Yuan L, et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996, 92: 230244.\[39\]Price A H, Young E M, Tomos A D. Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza sativa). New Phytol, 1997, 137: 8391.\[40\]Nelson J C, McClung A M, Fjellstrom R G, et al. Mapping QTL main and interaction influences on milling quality in elite US rice germplasm. Theor Appl Genet, 2011, 122: 291309.\[41\]Sarma R N, Gill B S, Sasaki T, et al. Comparative mapping of the wheat chromosome 5A VrnA1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet, 1998, 97: 103109.\[42\]Albar L, Lorieux M, Ahmadi N, et al. Genetic basis and mapping of the resistance to rice yellow mottle virus: Ⅰ. QTLs identification and relationship between resistance and plant morphology. Theor Appl Genet, 1998, 97: 11451154.\[43\]Hittalmani S, Huang N, Courtois B, et al. Identification of QTL for growth and grain yieldrelated traits in rice across nine locations of Asia. Theor Appl Genet, 2003, 107: 679690.\[44\]Liu G F, Yang J, Xu H M, et al. Influence of epistasis and QTL× environment interaction on heading date of rice (Oryza sativa L). J Genet Genom, 2007, 34: 608615.\[45\]Zou J H, Pan X B, Chen Z X, et al. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L). Theor Appl Genet, 2000, 101: 569573.\[46\]张永生, 江玲, 刘喜, 等. 控制水稻品种Koshihikari抽穗期的数量性状位点. 作物学报, 2008, 34(11): 18691876.\[47\]Yamamoto T, TaguchiShiobara F, Ukai Y, et al. Mapping quantitative trait loci for daystoheading, and culm, panicle and internode lengths in a BC1F3 population using an elite rice variety, Koshihikari, as the recurrent parent. Breeding Sci, 2001, 51: 6371.\[48\]Li Z, Pinson S R M, Stansel J W, et al. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1995, 91: 374381.\[49\]Mei H W, Luo L J, Ying C S, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003, 107: 89101.\[50\]Mei H W, Li Z K, Shu Q Y, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet, 2005, 110: 649659.\[51\]雷东阳, 陈立云. 水稻抽穗期QTLs的检测及上位性和环境互作效应. 湖南农业大学学报: 自然科学版, 2010, 36(3): 245249.\[52\]张启军, 梁永书, 叶少平, 等. 利用已测序水稻品种分析其农艺性状基因座. 作物学报, 2006, 32(10): 15031510.\[53\]Nagata K, Shimizu H, Terao T. Quantitative trait loci for nonstructural carbohydrate accumulation in leaf sheaths and culms of rice (Oryza sativa L.) and their effects on grain filling. Breeding Sci, 2002, 52: 275283.\[54\]Zhou Y, Li W, Wu W, et al. Genetic dissection of heading time and its components in rice. Theor Appl Genet, 2001, 102: 12361242.\[55\]张永生, 刘喜, 江玲, 等. 利用南京11×越光RIL群体进行抽穗期QTL定位分析. 江苏农业学报, 2009, 25(1): 612.\[56\]王春明, 安井秀, 吉村醇, 等. 水稻F2不育和抽穗期QTL分析. 遗传学报, 2002, 29(4): 339342.\[57\]谭震波, 沈利爽, 况浩池, 等. 水稻上部节间长度等数量性状基因的定位及其遗传效应分析. 遗传学报, 1996, 23(6): 439446.\[58\]Lu C F, Shen L S, Tan Z B, et al. Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubledhaploid population. Theor Appl Genet, 1997, 94: 145150.\[59\]国广泰史, 钱前, 佐藤宏之, 等. 水稻纹枯病抗性QTL分析. 遗传学报, 2002, 29(1): 5055.\[60\]李仕贵, 马玉清, 何 平, 等. 不同环境条件下水稻生育期和株高的QTL分析. 作物学报, 2002, 28(4): 546550.\[61\]He P, Li J Z, Zheng X W, et al. Comparison of molecular linkage maps and agronomic trait loci between DH and RIL populations derived from the same rice cross. Crop Sci, 2001, 41: 12401246.\[62\]Jiang G H, Xu C G, Li X H, et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTL on the genetic basis of plant height and heading date in rice. Agric Sci China, 2005, 4: 161168.\[63\]曾晶, 姜恭好, 何予卿, 等. 利用籼粳交探讨水稻株高和抽穗期的遗传基础. 分子植物育种, 2006, 4(4): 527534.\[64\]Maheswaran M, Huang N, Sreerangasamy S R, et al. Mapping quantitative trait loci associated with days to flowering and photoperiod sensitivity in rice (Oryza sativa L.). Mol Breeding, 2000, 6: 145155.\[65\]Wei X, Liu L, Xu J, et al. Breeding strategies for optimum heading date using genotypic information in rice. Mol Breeding, 2010, 25: 287-298.\[66\]张焦平, 江良荣, 黄建勋, 等. 水稻抽穗期上位效应和QE互作效应的分析. 分子植物育种, 2006, 4(3): 351357.\[67\]You A, Lu X, Jin H, et al. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. Genetics, 2006, 172: 12871300.\[68\]邢永忠, 徐才国, 华金平, 等. 水稻株高和抽穗期基因的定位和分离. 植物学报, 2001, 43(7): 721726.\[69\]郭龙彪, 罗利军, 邢永忠, 等. 水稻重要农艺性状的两年QTL剖析. 中国水稻科学, 2003, 17(3): 211218.\[70\]Yu S B, Li J X, Xu C G, et al. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet, 2002, 104: 619625.\[71\]张玉山, 吴薇, 徐才国. 利用两种方法构建的近等基因系对水稻两个多效区段遗传效应进行评价. 遗传, 2008, 30(6): 781787.\[72\]刘文俊, 王令强, 何予卿. 利用2个相关群体定位和比较水稻株高与抽穗期QTL. 华中农业大学学报, 2007, 26(2): 161166.\[73\]张振华, 郭梁, 朱玉君, 等. 籼稻不同定位群体抽穗期和株高的QTL比较研究. 中国农业科学, 2011, 44(15): 30693077.\[74\]Cao L Y, Wu J L, Fan Y Y, et al. QTL analysis for heading date and yield traits using recombinant inbred lines of indica rice grown in different cropping seasons. Plant Breeding, 2010, 129: 676682.\[75\]Takeuchi Y, Hayasaka H, Chiba B, et al. Mapping quantitative trait loci controlling cooltemperature tolerance at booting stage in temperate japonica rice. Breeding Sci, 2001, 51: 191197.\[76\]黄成, 姜树坤, 刘梦红, 等. 水稻抽穗期的QTL剖析. 华北农学报, 2009, 24(3): 79.\[77\]Suh J P, Ahn S N, Cho Y C, et al. Mapping of QTLs for yield traits using an advanced backcross population from a cross between Oryza sativa and O. glaberrima. Korean J Breed, 2005, 37: 214220.\[78\]Doi K, Yoshimura A, Iwata N. RFLP mapping and QTL analysis of heading date and pollen sterility using backcross populations between Oryza sativa L and Oryza glaberrima Steud. Breeding Sci, 1998, 48: 395399.\[79\]Moncada P, Martínez C P, Borrero J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001, 102: 4152.\[80\]Lee S J, Oh C S, Suh J P, et al. Identification of QTLs for domesticationrelated and agronomic traits in an Oryza sativa × O. rufipogon BC1F7 population. Plant Breeding, 2005, 124: 209219.\[81\]Septiningsih E M, Prasetiyono J, Lubis E, et al. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet, 2003, 107: 14191432.\[82\]Thomson M J, Tai T H, McClung A M, et al. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003, 107: 479493.\[83\]谭禄宾, 张培江, 付永彩, 等. 云南元江普通野生稻株高和抽穗期QTL定位研究. 遗传学报, 2004, 31(10): 11231128.\[84\]董华林, 张晨昕, 曾波, 等. 利用野生稻高代回交群体分析水稻农艺性状QTL. 华中农业大学学报, 2009, 28(6): 645650.\[85\]Brondani C, Rangel P H N, Brondani R P V, et al. QTL mapping and introgression of yieldrelated traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet, 2002, 104: 11921203.\[86\]Yamamoto T, Lin H X, Sasaki T, et al. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154: 885891.\[87\]Yano M, Kojima S, Takahashiet Y, et al. Genetic control of flowering time in rice, a shortday plant. Plant Physiol, 2001, 127: 14251429.\[88\]Uga Y, Nonoue Y, Liang Z W, et al. Accumulation of additive effects generates a strong photoperiod sensitivity in the extremely lateheading rice cultivar Nona Bokra. Theor Appl Genet, 2007, 114: 14571466.\[89\]McCouch S R, CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative). Gene nomenclature system for rice. Rice, 2008, 1: 7284.\[90\]魏祥进, 江玲, 徐俊锋, 等. 我国华北地区粳稻品种抽穗期遗传分析. 中国水稻科学, 2009, 23(6): 595603.\[91\]徐俊锋, 魏祥进, 江玲, 等. 我国部分早籼品种及杂交早籼骨干亲本抽穗期遗传分析. 中国水稻科学, 2009, 24(3): 215222.\[92\]周振玲, 魏祥进, 江玲, 等. 我国西南地区粳稻品种抽穗期的遗传分析. 中国水稻科学, 2011, 25(3): 267276.\[93\]周振玲, 江玲, 徐大勇, 等. 太湖流域晚粳品种抽穗期的遗传分析. 中国水稻科学, 2011, 25(4): 357364.\[94\]Xing Y Z, Tan Y F, Hua J P, et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002, 105: 248257.\[95\]Yu S B, Li J X, Tan Y F, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94: 92269231.\[96\]Zhuang J Y, Fan Y Y, Rao Z M, et al. Analysis on additive effects and additivebyadditive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet, 2002, 105: 11371145.\[97\]杨仕华, 廖琴, 谷铁城, 等. 我国水稻品种审定回顾与分析. 中国稻米, 2010, 16(2): 14. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | FU Rongtao, CHEN Cheng, WANG Jian, ZHAO Liyu, CHEN Xuejuan, LU Daihua. Combined Transcriptome and Metabolome Analyses Reveals the Pathogenic Factors of Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(4): 375-385. |
[5] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[6] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[7] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[8] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[9] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[10] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[11] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[12] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[13] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[14] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[15] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||